Module 3: General Linear Model

MSIR 525

October 14-28, 2019

Recap of Module 2 (check list from syllabus; see pages 1-2)

- We learned about several issues in data sets (e.g., outliers, missing data, non-normal distributions) that may bring into question the robustness of empirical results
- We developed R code that will estimate descriptive statistics for a set of data
- We learned about the importance of interpreting and communicating descriptive statistics (e.g., in tandem, visually and empirically)
- Although we did not perform an ANOVA to assess if means differed across multiple groups, we discuss the technique's utility and limitations
- We learned how to perform a t-test; interpret its results; use its results to inform an evidencebased management decision
- Importantly, we learned how to "explore further" to gain a better understanding of what the data are telling us

Agenda for Module 3

- 10/14/2019
- Review of hackathon exercise; introduction to the general linear model (GLM); an assessment of the GLM assumptions

Agenda for Module 3

- 10/14/2019
- Review of hackathon exercise; introduction to the general linear model (GLM); an assessment of the GLM assumptions
- 10/16/2019
- Procedures to assess the relation between a predictor and a continuous outcome variable

Agenda for Module 3

- 10/14/2019
- Review of hackathon exercise; introduction to the general linear model (GLM); an assessment of the GLM assumptions
- 10/16/2019
- Procedures to assess the relation between a predictor and a continuous outcome variable
- 10/21/2019
- Procedures to assess the relation between a predictor and a dichotomous outcome variable

Agenda for Module 3

- 10/14/2019
- Review of hackathon exercise; introduction to the general linear model (GLM); an assessment of the GLM assumptions
- 10/16/2019
- Procedures to assess the relation between a predictor and a continuous outcome variable
- 10/21/2019
- Procedures to assess the relation between a predictor and a dichotomous outcome variable
- 10/23/2019
- Module 3 recap and software tutorial

Agenda for Module 3

- 10/14/2019
- Review of hackathon exercise; introduction to the general linear model (GLM); an assessment of the GLM assumptions
- 10/16/2019
- Procedures to assess the relation between a predictor and a continuous outcome variable
- 10/21/2019
- Procedures to assess the relation between a predictor and a dichotomous outcome variable
- 10/23/2019
- Module 3 recap and software tutorial
- 10/28/2019
- In-class exercise for credit (i.e., a hackathon)
- Determine the strongest correlates of employee performance and turnover behavior

Agenda for Module 3

- Let's get started! ©

Motivating Example:

- Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

Motivating Example:

- Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

IMPORTANT POINT

Motivating Example:

- Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

IMPORTANT POINT

WE ARE NO LONGER DEALING WITH UNIVARIATE STATISTICS

Motivating Example:

- Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

IMPORTANT POINT

- WE ARE NO LONGER DEALING WITH UNIVARIATE STATISTICS (MODULE 2)

Motivating Example:

- Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

Motivating Example:

- Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

IMPORTANT POINT
- WE ARE NO LONGER DEALING
WITH UNIVARIATE STATISTICS
(MODULE 2)
- NOW, WE ARE DEALING WITH
BIVARIATE STATISTICS (MODULE
3)

```
WHAT DOES THIS MEAN?
- MEASURES OF CENTRAL
TENDENCY (E.G., MEAN)
SUMMARIZE DATA PERTAINING
TO JUST ONE VARIABLE
(MODULE 2)
```


Motivating Example:

- Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

IMPORTANT POINT
- WE ARE NO LONGER DEALING
WITH UNIVARIATE STATISTICS
(MODULE 2)
- NOW, WE ARE DEALING WITH
BIVARIATE STATISTICS (MODULE
3)

```
WHAT DOES THIS MEAN?
- MEASURES OF CENTRAL
    TENDENCY (E.G., MEAN)
    SUMMARIZE DATA PERTAINING
    TO JUST ONE VARIABLE
    (MODULE 2)
- NOW, WE ARE INTERESTED IN
    THE RELATION BETWEEN TWO
    VARIABLES (MODULE 3)
```


Motivating Example:

- Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

Motivating Example:

- Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.
- Effectively, you want to assess the validity of the organization's current screening tool(s)

Motivating Example:

- Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.
- Effectively, you want to assess the validity of the organization's current screening tool(s)
- In other words, are the screening tools useful for forecasting important outcomes that will affect organizational performance

Motivating Example:

- Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

How could univariate statistics be used in the aforementioned example?

Motivating Example:

- Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

How could univariate statistics be used in the aforementioned example?

- To summarize the central tendency of one variable

Motivating Example:

- Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

How could univariate statistics be used in the aforementioned example?

- To summarize the central tendency of one variable

How can bivariate statistics be used in the aforementioned example?

Motivating Example:

- Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

How could univariate statistics be used in the aforementioned example?

- To summarize the central tendency of one variable

How can bivariate statistics be used in the aforementioned example?

Motivating Example:

- Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

How could univariate statistics be used in the aforementioned example?

- To summarize the central tendency of one variable

How can bivariate statistics be used in the aforementioned example?

- You're right, we don't know how to do this just yet (it's the whole purpose of Module 3!

So, let's go and learn about the correlation coefficient and the simple linear regression model

Motivating Example:

Motivating Example:

How can these relations be summarized?
First, we can use the correlation coefficient to measure the association between variables in each of relation of interest
(1) Test score \rightarrow Performance
(2) Test score \rightarrow Turnover

Motivating Example:

How can these relations be summarized?
First, we can use the correlation coefficient
to measure the association between
variables in each of relation of interest
(1) Test score \rightarrow Performance
(2) Test score \rightarrow Turnover

A subtle, but very important point, is being made here...

Motivating Example:

How can these relations be summarized?
First, we can use the correlation coefficient
to measure the association between
variables in each of relation of interest
(1) Test score \rightarrow Performance
(2) Test score \rightarrow Turnover

A subtle, but very important point, is being made here...

We are looking at the association between two things.

Motivating Example:

How can these relations be summarized?

First, we can use the correlation coefficien
to measure the association between
variables in each of relation of interest
(1) Test score \rightarrow Performance
(2) Test score \rightarrow Turnover

A subtle, but very important point, is being made here...

We are looking at the association between two things.

We are not predicting one them from another

Motivating Example:

- Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.
- Effectively, you want to know if the organization's current screening tools have important validity outcomes.

Motivating Example:

How can these relations be summarized?
First, we can use the correlation coefficient to measure the association between variables in each of relation of interest

Motivating Example:

How can these relations be summarized?
First, we can use the correlation coefficient to measure the association between variables in each of relation of interest

The correlation coefficient has two characteristics...

Motivating Example:

How can these relations be summarized?
First, we can use the correlation coefficient to measure the association between variables in each of relation of interest

The correlation coefficient has two characteristics...
(1) Direction \rightarrow Tells us if the nature of the relation is positive $(+)$ or negative (-)

Motivating Example:

How can these relations be summarized?

First, we can use the correlation coefficient to measure the association between variables in each of relation of interest

The correlation coefficient has two characteristics...
(1) Direction \rightarrow Tells us if the nature of the relation is positive $(+)$ or negative (-)
(1) If positive...

- As X increases, Y increases
(2) If negative...
- As X increases, Y decreases

Motivating Example:

How can these relations be summarized?

First, we can use the correlation coefficient to measure the association between variables in each of relation of interest

The correlation coefficient has two characteristics.

Motivating Example:

How can these relations be summarized?

First, we can use the correlation coefficient to measure the association between variables in each of relation of interest

The correlation coefficient has two characteristics
(1) Direction \rightarrow Tells us if the nature of the relation is positive $(+)$ or negative (-)
(1) If positive

- As X increases, Y increases
(2) If negative
- As X increases, Y decreases

Motivating Example:

How can these relations be summarized?

First, we can use the correlation coefficient to measure the association between variables in each of relation of interest

The correlation coefficient has two characteristics...
(1) Direction \rightarrow Tells us if the nature of the relation is positive $(+)$ or negative (-)
(2) Magnitude \rightarrow Tells us if the relation between two things is "weak" or "strong"

Motivating Example:

How can these relations be summarized?

First, we can use the correlation coefficient to measure the association between variables in each of relation of interest

The correlation coefficient has two characteristics...
(1) Direction \rightarrow Tells us if the nature of the relation is positive $(+)$ or negative (-)
(2) Magnitude \rightarrow Tells us if the relation between two things is "weak" or "strong"
(1) Ranges on a scale from $0 \rightarrow|1|$

Motivating Example:

How can these relations be summarized?

First, we can use the correlation coefficient to measure the association between variables in each of relation of interest

The correlation coefficient has two characteristics.
(1) Direction \rightarrow Tells us if the nature of the relation is positive (+) or negative (-)
(2) Magnitude \rightarrow Tells us if the relation
between two things is "weak" or
‘strong’
(1) Ranges on a scale from $0 \rightarrow|1|$

Motivating Example:

Motivating Example:

How can these relations be summarized?

First, we can use the correlation coefficient to measure the association between variables in each of relation of interest

The correlation coefficient has two characteristics.

Motivating Example:

Correlation Effect Size Benchmarks

Benchmarks are standards or points of reference against which things may be compared or assessed.

Motivating Example:

Motivating Example:

Motivating Example:

Correlation Effect Size Benchmarks

Benchmarks are standards or points of reference against which things may be compared or assessed.

With regard to correlation coefficients, benchmarks are useful because they let us know how strongly two things are associated (or correlated).

Motivating Example:

Correlation Effect Size Benchmarks

Benchmarks are standards or points of reference against which things may be compared or assessed.

With regard to correlation coefficients, benchmarks are useful because they let us know how strongly two things are associated (or correlated).

According to Cohen (1988)

- A "small" effect size = $\sim|.10|$
- A "medium" effect size $=\sim|.30|$
- A "large" effect size $=\sim|.50|$

Motivating Example:

Correlation Effect Size Benchmarks

Benchmarks are standards or points of reference against which things may be compared or assessed.

With regard to correlation coefficients, benchmarks are useful because they let us know how strongly two things are associated (or correlated).

According to Cohen (1988)

- A "small" effect size = $\sim|.10|$
- A "medium" effect size $=\sim|.30|$
- A "large" effect size $=\sim|.50|$

However, these benchmarks were established arbitrarily \& without evidence!

Motivating Example:

Correlation Effect Size Benchmarks

Benchmarks are standards or points of reference against which things may be compared or assessed.

Empirical evidence (see Bosco et al., 2015) suggests that effect size benchmarks should be...

- A "small" effect size $=\sim$. (10) $\sim \cdot .09 \mid$
- A "medium" effect size $=-180 \quad \sim 1.16$
- A"large" effect size $=\sim(50) \sim 1.32$

Motivating Example:

Correlation Effect Size Benchmarks

Benchmarks are standards or points of reference against which things may be compared or assessed.

Empirical evidence (see Bosco et al., 2015) suggests that effect size benchmarks should be...

- A "small" effect size $=\sim$. (10) $\sim \cdot .09 \mid$
- A "medium" effect size $=-(180) \quad \sim|.16|$
- A"large" effect size $=\sim(50) \sim|.32|$

Does this affect our interpretation of the results shown in the adjacent model?

How are correlation coefficients reported?

How are correlation coefficients reported?

TABLE 1. "REGULAR" CORRELATION MATRIX

Variable	M	SD	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1. Supplier innovation	5.05	0.75	-													
2. Supplier innovation knowledge	5.43	0.99	. 35 **	(.83)												
3. Customer innovation know.	4.93	1.17	.29**	. 29 **	(.85)											
4. Embedded ties	5.58	0.86	.22**	. 22 **	. 13	(.72)										
5. Relationship length	12.28	12.36	. 03	-. 03	-. 04	. 00	-									
6. Relationship formalization	4.28	1.49	. 04	.17*	. 01	. 11	. 02	-								
7. CRS investments	2.96	0.97	. 15	. 09	. 15	.25**	. 09	. 03	(.84)							
8. Supplier financial performance	4.73	1.38	. 23 **	.16*	. 11	. 33 **	. 12	. 02		(.93)						
9. Supplier strategic advantage	5.27	1.20	. 32 **	. 21 **	.20*	.27**	. 06	-. 00	.19*	. 43 **	(.81)					
10. Customer dependence	0.18	0.39	. 07	. 09	-. 01	. 01	-0.1	-. 1	. 02	. 04	. 03	-				
11. Market turbulence	4.30	1.18	.20*	.20*	.27**	. 09	. 04	. 15	. 13	. 11	. 00	-. 10	(.83)			
12. Technological turbulence	4.50	1.16	. 15	. 14	. 14	. 05	. 02	.19*	. 11	. 02	. 11	. 04	.40**	(.80)		
13. Opportunism	2.84	1.10	-. 24 **	-. 26 **	.25**	-. 25 **		28**	-. 04	-.22**	-.31**	. 07	-. 06	. 07	(.78)	
14. Knowledge redundancy	2.94	1.26	-.17*	-. 09	-. 12	-. 14	-. 00	. 12	. 11	-. 02	-. 07	-. 10	. 09	. 06	. 07	-

How are correlation coefficients reported?

TABLE 1. "REGULAR" CORRELATION MATRIX

Variable	M	SD	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1. Supplier innovation	5.05	0.75	-													
2. Supplier innovation knowledge	5.43	0.99	. 35 **	(.83)												
3. Customer innovation know.	4.93	1.17	.29**	. 29 **	(.85)											
4. Embedded ties	5.58	0.86	.22**	. 22 **	. 13	(.72)										
5. Relationship length	12.28	12.36	. 03	-. 03	-. 04	. 00	-									
6. Relationship formalization	4.28	1.49	. 04	.17*	. 01	. 11	. 02	-								
7. CRS investments	2.96	0.97	. 15	. 09	. 15	.25**	. 09	. 03	(.84)							
8. Supplier financial performance	4.73	1.38	. 23 **	.16*	. 11	. 33 **	. 12	. 02		(.93)						
9. Supplier strategic advantage	5.27	1.20	. 32 **	. 21 **	.20*	.27**	. 06	-. 00	.19*	. 43 **	(.81)					
10. Customer dependence	0.18	0.39	. 07	. 09	-. 01	. 01	-0.1	-. 1	. 02	. 04	. 03	-				
11. Market turbulence	4.30	1.18	.20*	.20*	.27**	. 09	. 04	. 15	. 13	. 11	. 00	-. 10	(.83)			
12. Technological turbulence	4.50	1.16	. 15	. 14	. 14	. 05	. 02	.19*	. 11	. 02	. 11	. 04	.40**	(.80)		
13. Opportunism	2.84	1.10	-. 24 **	-. 26 **	.25**	-. 25 **		28**	-. 04	-.22**	-.31**	. 07	-. 06	. 07	(.78)	
14. Knowledge redundancy	2.94	1.26	-.17*	-. 09	-. 12	-. 14	-. 00	. 12	. 11	-. 02	-. 07	-. 10	. 09	. 06	. 07	-

How are correlation coefficients reported?

TABLE 1. "REGULAR" CORRELATION MATRIX

Variable	M	SD	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1. Supplier innovation	5.05	0.75	-													
2. Supplier innovation knowledge	5.43	0.99	. $35^{* *}$	(.83)												
3. Customer innovation know.	4.93	1.17	. 29 **	.29**	(.85)											
4. Embedded ties	5.58	0.86	. 22 **	.22**	. 13	(.72)										
5. Relationship length	12.28	12.36	. 03	-. 03	-. 04	. 00	-									
6. Relationship formalization	4.28	1.49	. 04	.17*	. 01	. 11	. 02	-								
7. CRS investments	2.96	0.97	. 15	. 09	. 15	. $25^{* *}$. 09	. 03	(.84)							
8. Supplier financial performance	4.73	1.38	. 23 **	.16*	. 11	. 33 **	. 12	. 02	. 14	(.93)						
9. Supplier strategic advantage	5.27	1.20	. 32 **	. 21 **	.20*	.27**	. 06	-. 00	.19*	. 43 **	(.81)					
10. Customer dependence	0.18	0.39	. 07	. 09	-. 01	. 01	-0.1	-. 1	. 02	. 04	. 03	-				
11. Market turbulence	4.30	1.18	.20*	.20*	.27**	. 09	. 04	. 15	. 13	. 11	. 00	-. 10	(.83)			
12. Technological turbulence	4.50	1.16	. 15	. 14	. 14	. 05	. 02	.19*	. 11	. 02	. 11	. 04	. 40 **	(.80)		
13. Opportunism	2.84	1.10	-. $24^{* *}$	-.26**	-. $25^{* *}$	-.25**		28**	-. 04	-. 22 **	$-.31 * *$. 07	-. 06	. 07	(.78)	
14. Knowledge redundancy	2.94	1.26	-.17*	-. 09	-. 12	-. 14	-. 00	. 12	. 11	-. 02	-. 07	-. 10	. 09	. 06	. 07	-

How are correlation coefficients reported?

TABLE 1. "REGULAR" CORRELATION MATRIX

Variable	M SD	12	3	4	5	6	7	8	9	10	11	12	13	14
1. Supplier innovation	$\begin{array}{ll}5.05 & 0.75\end{array}$	-												
2. Supplier innovation knowledge	5.430 .99	. $35^{* *}$ (.83)												
3. Customer innovation know.	4.931 .17	. 29 ** .29**	(.85)											
4. Embedded ties	5.580 .86	. 22 ** .22**	. 13	(.72)										
5. Relationship length	12.2812 .36	. $03-.03$	-. 04	. 00	-									
6. Relationship formalization	4.281 .49	. 04 .17*	. 01	. 11	. 02	-								
7. CRS investments	$\begin{array}{ll}2.96 & 0.97\end{array}$. 15.09	. 15	. $25^{* *}$. 09	. 03	(.84)							
8. Supplier financial performance	4.731 .38	. 23 ** .16*	. 11	. 33 **	. 12	. 02	. 14	(.93)						
9. Supplier strategic advantage	5.271 .20	. $32 * * .21$ **	.20*	.27**	. 06	-. 00	.19*	.43**	(.81)					
10. Customer dependence	$\begin{array}{lll}0.18 & 0.39\end{array}$. 07 . 09	-. 01	. 01	-0.1	-. 1	. 02	. 04	. 03	-				
11. Market turbulence	4.301 .18	. 20 * . 20^{*}	. $27 * *$. 09	. 04	. 15	. 13	. 11	. 00	-. 10	(.83)			
12. Technological turbulence	4.501 .16	. 15 . 14	. 14	. 05	. 02	.19*	. 11	. 02	. 11	. 04	.40**	(.80)		
13. Opportunism	2.841 .10	$-.24^{* *}-.26^{* *}$	-.25**	-. 25 **		$28^{* *}$	-. 04 -	. 22 **	-.31**	. 07	-. 06	. 07	(.78)	
14. Knowledge redundancy	2.941 .26	-.17* -. 09	-. 12	-. 14	-. 00	. 12	. 11	-. 02	-. 07	-. 10	. 09	. 06	. 07	-
\pm	\downarrow													
Variables included in the study	Descriptiv	ve statistics												

How are correlation coefficients reported?

TABLE 1. "REGULAR" CORRELATION MATRIX
Intercorrelations and reliability estimates

Variable	M	SD	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1. Supplier innovation	5.05	0.75	-													
2. Supplier innovation knowledge	5.43	0.99	. $35 * *$	(.83)												
3. Customer innovation know.	4.93	1.17	.29**	.29**	(.85)											
4. Embedded ties	5.58	0.86	.22**	.22**	. 13	(.72)										
5. Relationship length	12.28	12.36	. 03	-. 03	-. 04	. 00	-									
6. Relationship formalization	4.28	1.49	. 04	.17*	. 01	. 11	. 02	-								
7. CRS investments	2.96	0.97	. 15	. 09	. 15	. $25^{* *}$. 09		(.84)							
8. Supplier financial performance	4.73	1.38	.23**	.16*	. 11	. 33 **	. 12	. 02		(.93)						
9. Supplier strategic advantage	5.27	1.20	.32**	21 **	.20*	. $27 * *$. 06	-. 00	.19*	. 43 **	(.81)					
10. Customer dependence	0.18	0.39	. 07	. 09	-. 01	. 01	-0.1	-. 1	. 02	. 04	. 03	-				
11. Market turbulence	4.30	1.18	.20*	.20*	.27**	. 09	. 04	. 15	. 13	. 11	. 00		(.83)			
12. Technological turbulence	4.50	1.16	. 15	. 14	. 14	. 05	. 02	.19*	. 11	. 02	. 11	. 04	.40**	(.80)		
13. Opportunism	2.8	1.10	. $24^{* *}$. 26 **	-.25**	. 25 **		28**	-. 04 -	. 22 **	-. $31 * *$. 07	-. 06	. 07	(.78)	
14. Knowledge redundancy	2.9	1.26	-.17*	-. 09	-. 12	-. 14	-. 00	. 12	. 11	-. 02	-. 07	-. 10	. 09	. 06	. 07	
\pm																
Variables included in the study		criptiv	e statist													

How are correlation coefficients reported?

TABLE 1. "REGULAR" CORRELATION MATRIX
Intercorrelations and reliability estimates

Variable	M SD	12	3	4	5	6	7	8	9	10	11	12	13	14
1. Supplier innovation	$\begin{array}{ll}5.05 & 0.75\end{array}$	-												
2. Supplier innovation knowledge	5.43	.35** (.83)												
3. Customer innovation know.	4.931 .17	.29** . $29 * *$	(.85)											
4. Embedded ties	5.58 0.86	. $22^{* *} .22^{* *}$. 13	(.72)										
5. Relationship length	12.2812 .36	. $03-.03$	-. 04	. 00	-									
6. Relationship formalization	4.281 .49	. 04 .17*	. 01	. 11	. 02									
7. CRS investments	$\begin{array}{ll}2.96 & 0.97\end{array}$.15 .09	. 15.	.25**	. 09	. 03	(.84)							
8. Supplier financial performance	4.731 .38	. $23 * * .16^{*}$. 11	. $33 * *$. 12	. 02	. 14	(.93)						
9. Supplier strategic advantage	5.271 .20	. $32 * * .21 * *$.20* .	.27**	. 06	-. 00	.19*	.43**	(.81)					
10. Customer dependence	$\begin{array}{ll}0.18 & 0.39\end{array}$.07 . 09	-. 01	. 01	-0.1	-. 1	. 02	. 04	. 03	-				
11. Market turbulence	4.301 .18	.20* .20*	. 27 **	. 09	. 04	. 15	. 13	. 11	. 00	-. 10	(.83)			
12. Technological turbulence	4.501 .16	. 15.14	. 14	. 05	. 02	.19*	. 11	. 02	. 11	. 04	.40**	(.80)		
13. Opportunism	2.841 .10	. $24 * *$ - $26^{* *}$ -	-. $25^{* *}$ -	. 25 **		28**	-. 04	.22**	-.31**	. 07	-. 06	. 07	(.78)	
14. Knowledge redundancy	2.94 1.26	-. $17 *$ - 09	-. 12	-. 14	-. 00	. 12	. 11	-. 02	-. 07	-. 10	. 09	. 06	. 07	-
\downarrow	\downarrow													
Variables included in the study	Descriptiv	e statistics												

How are correlation coefficients reported?

TABLE 1. "REGULAR" CORRELATION MATRIX

Variable	M	SD	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1. Supplier innovation	5.05	0.75	-													
2. Supplier innovation knowledge	5.43	0.99	. 35 **	(.83)												
3. Customer innovation know.	4.93	1.17	.29**	.29**	(.85)											
4. Embedded ties	5.58	0.86	.22**	. 22 **	. 13	(.72)										
5. Relationship length	12.28	12.36	. 03	-. 03	-. 04	. 00	-									
6. Relationship formalization	4.28	1.49	. 04	.17*	. 01	. 11	. 02	-								
7. CRS investments	2.96	0.97	. 15	. 09	. 15	.25**	. 09	. 03	(.84)							
8. Supplier financial performance	4.73	1.38	. 23 **	.16*	. 11	. $33 * *$. 12	. 02	. 14	(.93)						
9. Supplier strategic advantage	5.27	1.20	.32**.	. 21 **	.20*	.27**	. 06	-. 00	.19*	. 43 **	(.81)					
10. Customer dependence	0.18	0.39	. 07	. 09	-. 01	. 01	-0.1	-. 1	. 02	. 04	. 03	-				
11. Market turbulence	4.30	1.18	.20*	.20*	.27**	. 09	. 04	. 15	. 13	. 11	. 00	-. 10	(.83)			
12. Technological turbulence	4.50	1.16	. 15	. 14	. 14	. 05	. 02	.19*	. 11	. 02	. 11	. 04	.40**	(.80)		
13. Opportunism	2.84	1.10	$-.24 * *$	-.26**	.25**	-. 25 **		28**	-. 04	-.22**	-.31**	. 07	-. 06	. 07	(.78)	
14. Knowledge redundancy	2.94	1.26	-.17*	-. 09	-. 12	-. 14	-. 00	. 12	. 11	-. 02	-. 07	-. 10	. 09	. 06	. 07	-

What is the effect size for the "relationship length \rightarrow customer dependence" relation?

How are correlation coefficients reported?

TABLE 1. "REGULAR" CORRELATION MATRIX

Variable	M	SD	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1. Supplier innovation	5.05	0.75	-													
2. Supplier innovation knowledge	5.43	0.99	.35**	(.83)												
3. Customer innovation know.	4.93	1.17	.29**	.29**	(.85)											
1. Cmbeddedties	5.58	0.86	.22**	. 22 **	. 13	(.72)										
5. Relationship length	2.28	12.36	. 03	-. 03	-. 04	. 00	-									
6. Relationship formalization	4.28	1.49	. 04	.17*	. 01	. 11	. 02	-								
7. CRS investments	2.96	0.97	. 15	. 09	. 15	.25**	. 09	. 03	(.84)							
8. Supplier financial performance	4.73	1.38	.23**	.16*	. 11	.33**	. 12	. 02		(.93)						
O. Supplien strategie - dvantage	5.27	1.20	. 32 **	. 21 **	.20*	.27**	. 06	-. 00	.19*	. 43 **	(.81)					
10. Customer dependence	0.18	0.39	. 07	. 09	-. 01	. 01	-0.1	-. 1	. 02	. 04	. 03	-				
11. Market turbulence	4.30	1.18	.20*	.20*	. $27 * *$. 09	. 04	. 15	. 13	. 11	. 00	-. 10	(.83)			
12. Technological turbulence	4.50	1.16	. 15	. 14	. 14	. 05	. 02	.19*	. 11	. 02	. 11	. 04	. 40 **	(.80)		
13. Opportunism	2.84	1.10	-. 24 **	-.26**	-. 25 **	-. 25 **	. 09.2	28**	-. 04	-. 22 **	-. 31 **	. 07	-. 06	. 07	(.78)	
14. Knowledge redundancy	2.94	1.26	-.17*	-. 09	-. 12	-. 14	-. 00	. 12	. 11	-. 02	-. 07	-. 10	. 09	. 06	. 07	-

What is the effect size for the "relationship length \rightarrow customer dependence" relation?

How are correlation coefficients reported?

TABLE 1. "REGULAR" CORRELATION MATRIX

Variable	M	SD	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1. Supplier innovation	5.05	0.75	-													
2. Supplier innovation knowledge	5.43	0.99	. 35 **	(.83)												
3. Customer innovation know.	4.93	1.17	. 29 **	. 29 **	(.85)											
1. Embedded ties	5.58	0.86	. 22 **	.22**	. 13	(.72)										
5. Relationship length	2.28	12.36	. 03	-. 03	-. 04	. 00	-									
6. Relationship formalization	4.28	1.49	. 04	.17*	. 01	. 11	. 02	-								
7. CRS investments	2.96	0.97	. 15	. 09	. 15	.25**	. 09	. 03	(.84)							
8. Supplier financial performance	4.73	1.38	. 23 **	.16*	. 11	.33**	. 12	. 02	. 14	(.93)						
p. Supplier stuategio edvontage	5.27	1.20	. 32 **	. 21 **	.20*	.27**	. 06	-. 00	.19*	.43**	(.81)					
10. Customer dependence	0.18	0.39	. 07	. 09	-. 01	. 01	-0.1	-. 1	. 02	. 04	. 03	-				
11. Market turbulence	4.30	1.18	.20*	.20*	. $27 * *$. 09	. 04	. 15	. 13	. 11	. 00	-. 10	(.83)			
12. Technological turbulence	4.50	1.16	. 15	. 14	. 14	. 05	. 02	.19*	. 11	. 02	. 11	. 04	. 40 **	(.80)		
13. Opportunism	2.84	1.10	-. $24^{* *}$	-. 26 **	-. 25 **	-. 25 **	. 09.	.28**	-. 04	-. 22 **	-.31**	. 07	-. 06	. 07	(.78)	
14. Knowledge redundancy	2.94	1.26	-.17*	-. 09	-. 12	-. 14	-. 00	. 12	. 11	-. 02	-. 07	-. 10	. 09	. 06	. 07	-

What is the effect size for the "relationship length \rightarrow customer dependence" relation?

How are correlation coefficients reported?

Variable	M	SD	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1. Supplier innovation	5.05	0.75	-													
2. Supplier innovation knowledge	5.43	0.99	. 35 **	(.83)												
3. Customer innovation know.	4.93	1.17	.29**	. 29 **	(.85)											
1. Cmbedded ties	5.58	0.86	.22**	. 22 **	. 13	(.72)										
5. Relationship length	2.28	12.36	. 03	-. 03	-. 04	. 00	-									
6. Relationship formalization	4.28	1.49	. 04	.17*	. 01	. 11	. 02	-								
7. CRS investments	2.96	0.97	. 15	. 09	. 15	.25**	. 09	. 03	(.84)							
8. Supplier financial performance	4.73	1.38	. 23 **	.16*	. 11	. 33 **	. 12	. 02	. 14	(.93)						
p. Supplier strategio odvantage	5.27	1.20	. $32 * *$. 21 **	.20*	.27**	06	-. 00	.19*	. 43 **	(.81)					
10. Customer dependence	0.18	0.39	.07	.07	-. 21	.01	-0.1	-. 1	. 02	. 04	. 03	-				
11. Market turbulence	4.30	1.18	.20*	.20*	.27**	. 09	. 04	. 15	. 13	. 11	. 00	-. 10	(.83)			
12. Technological turbulence	4.50	1.16	. 15	. 14	. 14	. 05	. 02	.19*	. 11	. 02	. 11	. 04	. 40 **	(.80)		
13. Opportunism	2.84	1.10	-. 24 **	-. 26 **	-. 25 **	.25**		28**	-. 04	-. 22 **	-.31**	. 07	-. 06	. 07	(.78)	
14. Knowledge redundancy	2.94	1.26	-.17*	-. 09	-. 12	-. 14	-. 00	. 12	. 11	-. 02	-. 07	-. 10	. 09	. 06	. 07	-

What is the effect size for the "relationship length \rightarrow customer dependence" relation?

How are correlation coefficients reported?

TABLE 1. "REGULAR" CORRELATION MATRIX

Variable	M	SD	1	2	3	4	5	6	7	8	9	10	11	12	13	4
1. Supplier innovation	5.05	0.75	-													
2. Supplier innovation knowledge	5.43	0.99	. 35 **	(.83)												
3. Customer innovation know.	4.93	1.17	.29**	.29**	(.85)					These	are d	rip	sta	,		
1. Embedded ties	5.58	0.86	.22**	.22**	. 13	(.72)				corre	ations!	So, w	jump	right		
5. Relationship length	2.28	12.36	. 03	-. 03	-. 04	. 00				these						
6. Relationship formalization	4.28	1.49	. 04	.17*	. 01											
7. CRS investments	2.96	0.97	. 15	. 09		25**	. 09	. 03	(.84)							
8. Supplier financial performance	4.73	1.38	. 23 **	.16	. 11	. $33 * *$. 12	. 02	. 14	(.93)						
p. Supplier stutogie advontoge	5.27	1.20	.32*	*	.20*	.27**	. 06	-. 00	.19*	. 43 **	(.81)					
10. Customer dependence	0.10	-0.39	. 07	. 09	-. 01	. 01	-0.1	-. 1	. 02	. 04	. 03	-				
11. Market turbulence	4.30	1.18	.20*	.20*	.27**	. 09	. 04	. 15	. 13	. 11	. 00	-. 10	(.83)			
12. Technological turbulence	4.50	1.16	. 15	. 14	. 14	. 05	. 02	.19*	. 11	. 02	. 11	. 04	. 40 **	(.80)		
13. Opportunism	2.84	1.10	-. $24 * *$	-26**	-.25**	. 25 **		28**	-. 04	-22**	-.31**	. 07	-. 06	. 07	(.78)	
14. Knowledge redundancy	2.94	1.26	-.17*	-. 09	-. 12	-. 14	-. 00	. 12	. 11	-. 02	-. 07	-. 10	. 09	. 06	. 07	-

What is the effect size for the "relationship length \rightarrow customer dependence" relation?

How are correlation coefficients reported?

TABLE 1. "REGULAR" CORRELATION MATRIX

Variable	M	SD	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1. Supplier innovation	5.05	0.75	-													
2. Supplier innovation knowledge	5.43	0.99	. $35 * *$	(.83)												
3. Customer innovation know.	4.93	1.17	. 29 **	. $29 * *$	(.85)											
1. Embedded ties	5.58	0.86	. 22 **	. 22 **	. 13	(.72)										
5. Relationship length	2.28	12.36	. 03	-. 03	-. 04	. 00	-									
6. Relationship formalization	4.28	1.49	. 04	.17*	. 01	. 11	. 02	-								
7. CRS investments	2.96	0.97	. 15	. 09	. 15	. 25 **	. 09	. 03	(.84)							
8. Supplier financial performance	4.73	1.38	. 23 **	.16*	. 11	. 33 **	. 12	. 02		(.93)						
p. Supplien stutagie dudumtoge	5.27	1.20	. 32 **	. 21 **	.20*	.27**	. 06	-00	.19*	.43**	(.81)					
10. Customer dependence	0.10	-0.39	. 07	. 09	-. 01	. 01	-0.1	-. 1	. 02	. 04	. 03	-				
11. Market turbulence	4.30	1.18	20	. 20 *	2**	. 09	. 4	. 15	. 13	. 11	. 00	-. 10	(.83)			
12. Technological turbulence	4.50	1.10	. 15	. 14		. 05	. 02	.19*	. 11	. 02	. 11	. 04	. 40 **	(.80)		
13. Opportunism	2.84	1.10	$-.24^{* *}$	-. 26 **	. $25^{* *}$	-. 25 **		$28^{* *}$	-. 04 -	. $22 * *$	-. $31 * *$. 07	-. 06	. 07	(.78)	
14. Knowledge redundancy	2.94	1.26	-.17*	-. 09	-. 12	-. 14	-. 00	. 12	. 11	-. 02	-. 07	-. 10	. 09	. 06	. 07	-

What is the effect size for the "relationship length \rightarrow customer dependence" relation?

Motivating Example:

In addition to the correlation coefficient, which quantifies the association between two things, one can employ a technique called Simple Linear Regression.

General Linear Model

- Both correlation analysis and simple linear regression are part of a family of analysis called the general linear model (GLM)
- Later on, in Module 4, we will learn about multiple regression, which is another member of the GLM family
- Simple linear regression = one predictor in the model
- Multiple regression = multiple predictors in the model

General Linear Model

- Both correlation analysis and simple linear regression are part of a family of analysis called the general linear model (GLM)
- Later on, in Module 4, we will learn about multiple regression, which is another member of the GLM family
- Simple linear regression = one predictor in the model
- Multiple regression = multiple predictors in the model
- Although the GLM technique relies on many assumptions, we are only going to introduce and discuss one of them...

GLM Assumption: Linearity

- Linearity is the assumption that the outcome variable is, in reality, linearly related to the predictor
- Put differently, the $X \rightarrow Y$ relation can be summarized by a straight line

GLM Assumption: Linearity

- Linearity is the assumption that the outcome variable is, in reality, linearly related to the predictor
- Put differently, the $X \rightarrow Y$ relation can be summarized by a straight line
But, will we always
observe a linear
relationship?

GLM Assumption: Linearity

- Linearity is the assumption that the outcome variable is, in reality, linearly related to the predictor
- Put differently, the $X \rightarrow Y$ relation can be summarized by a straight line
But, will we always
observe a linear
relationship?
Can you think of
examples of non-
linear relationships?

GLM Assumption: Linearity

- Linearity is the assumption that the outcome variable is, in reality, linearly related to the predictor
- Put differently, the $X \rightarrow Y$ relation can be summarized by a straight line

GLM Assumption: Linearity

- Linearity is the assumption that the outcome variable is, in reality, linearly related to the predictor
- Put differently, the $X \rightarrow Y$ relation can be summarized by a straight line
But, will we always
observe a linear
relationship?

Can you think of
examples of non-
linear relationships?

Linear

